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Utilizing Telematics Data to Support Effective Equipment
Fleet-Management Decisions: Utilization

Rate and Hazard Functions
Hisham Said, Ph.D., A.M.ASCE1; Tony Nicoletti2; and Peter Perez-Hernandez, S.M.ASCE3

Abstract: Contractors and equipment rental companies have started to acknowledge and use the telematics technology as a reliable solution
for timely collection of their equipment fleet data. Telematics is the integration of wireless communications, vehicle monitoring systems,
and location devices to provide real-time spatial and performance data of the fleet machines. Despite the large amount of real-time equipment
data made available by telematics, fleet managers still try to identify ways to use such data to make informed fleet-management decisions.
This paper presents the development of novel telematics-based computational methodologies to support two major equipment fleet
management tasks: fleet use assessment and equipment health monitoring. First, a description of the telematics system and data used
are presented. Second, a computational algorithm is proposed to quantify the fleet-wide equipment used, based on basic telematics data.
Third, a health-monitoring framework is developed to estimate equipment failure events using telematics-based hazard functions, which were
developed using survival analysis techniques. Finally, the telematics data sets of large equipment fleets (dozers, excavators, backhoes, and
dump trucks) from two companies are used to verify and validate the proposed research developments by providing insightful fleet-
management information. DOI: 10.1061/(ASCE)CP.1943-5487.0000444. © 2014 American Society of Civil Engineers.

Introduction

Equipment fleet management is a critical function in construction
companies as it greatly contributes to the business profitability by
managing the lifecycle operations of owned expensive assets. Fleet
management is not simply about operating and maintaining com-
panies’ equipment and machines. Rather, it includes a wider scope
of interdependent processes, like equipment investment justifica-
tion, models specification, acquisition, assignment, and disposal.
One of the critical processes of fleet management is the collection
and control of equipment data related to use, costs, and condition
diagnosis. Fleet data collection imposes great challenges to fleet
managers to effectively and efficiently collect, store, and process
equipment performance data in a timely manner.

In recent years, contractors and equipment rental companies
started to acknowledge and use the telematics technology as a re-
liable solution for timely collection of their equipment fleet data.
Telematics is the integration of wireless communications, vehicle
monitoring systems, and location devices to provide real-time spa-
tial and performance data of the fleet machines. Because of its great
benefit to contractors and heavy equipment rental houses, the tele-
matics market has witnessed significant growth, which resulted in
installing the technology in 5.8 million equipment units and
achieving more than $2 billion revenue in 2009 in the United
States. (Fletcher and Lauron 2009). Telematics provides various

advantages over other equipment-tracking technologies, such as
global position systems (GPS) and radio frequency identification
(RFID) (Lu et al. 2006). Telematics provides more than spatiotem-
poral data (location and time), as it communicates equipment per-
formance and condition data such as fuel consumption, engine
hours, and oil pressure. In addition, telematics does not require
dedicated infrastructure of receivers like RFID, as it transmits data
through the regular wireless communication networks used for mo-
bile phones, or through satellite communication. Accordingly, tele-
matics provides a more holistic and cost-effective technology for
monitoring large equipment fleets. One limitation of telematics
is its default reduced frequency of transmitting data compared
with RFID, which limits its application for detailed operation
tracking. Such frequency can be increased, but would require more
data storage infrastructure to maintain the larger expected data
volumes.

Telematics can be provided by two possible suppliers: the origi-
nal equipment manufacturer (OEM) or a third-party telematics ser-
vice provider (TSP). Newer equipment is usually manufactured
with a telematics system already installed by the original equipment
manufacturer. Telematics data are continuously sent to the OEM’s
Web system, which stores, organizes, and presents these data to the
fleet managers using visual and user-friendly interfaces. In contrast,
older equipment tiers that do not have an OEM telematics system
can be equipped with TSP-rigged units that are connected to the
equipment’s mechanical and electrical subsystems to obtain tele-
matics data. TSP companies maintain their own Web systems to
archive and report telematics data to the fleet manager, similar to
OEM systems.

Despite the growth and great potential of telematics, fleet man-
agers are challenged by the unclear possible uses of the significant
amount of data available by the technology. For middle and large
fleet sizes, telematics is considered a source of massive data over-
load to the fleet managers, who face difficulties in linking tele-
matics to business functions and performance metrics (Monnot
and Williams 2011; Trimble and Bowman 2012; Jackson 2012;
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Sutton 2013). For example, there were no previous reported expe-
riences or methodologies of possible uses for the continuous report-
ing of equipment geographic locations in managing the whole fleet.
Use challenges of telematics can be referred to the factual differ-
ence between data and information. Telematics provides a huge
amount of data that report the individual machine’s location and
performance, but does not directly provide useful information
about the machine’s operational efficiency and business return.
Identifying such useful information requires critical investigation
of the typical operations of heavy construction and fleet-based
companies, and accordingly establishing a link to related telematics
data. As a result, current fleet-management practices and critical
decisions (e.g., fleet use, maintenance, condition assessment) de-
pend on either extensive paper-based tracking systems or ad-hoc
subjective rules. This observation is valid for heavy construction
companies, equipment rental houses, and logistics/distribution
firms (Beach 2013), which individually have different business ob-
jectives but are all very similar in managing their equipment fleets.

Accordingly, this paper presents the development of novel
telematics-based computational methodologies to support two ma-
jor equipment fleet-management tasks: fleet use assessment and
equipment health monitoring. The objective of this paper is to pro-
pose one hypothesis: Telematics data already provides a detailed
and large record of equipment performance and condition, which
requires basic processing computational operations to obtain
higher-level fleet-management information. Thus, this paper is
organized into five major sections: (1) a brief review of previous
studies on telematics implementation in construction operations
and fleet management; (2) a description of the telematics system
and data used in this research; (3) a description of the developed
computational algorithms to generate telematics-based fleet use
metrics; (4) an explanation of the proposed health-monitoring
framework that generates equipment failure hazard functions from
obtained telematics data; and (5) future research directions and rec-
ommendations. This is a pilot study that considers only two of the
possible applications of telematics (fleet use and equipment health
condition), which is part of a larger research activity to develop a
holistic telematics-based, fleet-management system. These two ap-
plications were selected for two main reasons: (1) their critical role
in managing equipment fleets in terms of effectively using fleet
assets and maintaining them; and (2) their need for two different
types of telematics data (basic and CAN-bus), as explained later.
It is envisioned that the system would include other modules that
are related to critical equipment fleet and project-management
tasks, such as preventive maintenance planning, cost control, pro-
ductivity assessment, and fleet replacement.

Previous Research

Because of the novelty of the telematics technology, few research
studies have been performed to investigate its use in construction-
equipment performance tracking and fleet management. Monnot
and Williams (2011) briefly presented a general overview the types
of data collected by telematics and their possible benefits in equip-
ment fleet management, such as reporting of machines hours,
locations, fuel consumption, and health. However, this study did
not suggest detailed methodologies for transforming telematics
data into useful information that would benefit the fleet managers.
Trimble and Bowman (2012) performed a detailed market survey of
available telematics services in terms of integration and usability
features. Integration features are related to the operation of the
equipment and vehicles in terms of vehicle location, safety, diag-
nostics, communication, and interactivity. Usability features were

also studied to evaluate the usefulness of the solution to different
customer classes (small fleets and specialized fleets), data-reporting
capabilities (Web interfacing and data accessing), and integration
ability into company operations (staff management and risk man-
agement). The outcome of the performed survey was a consumer’s
guide to company planning, in adopting telematics technology to
help in evaluating and selecting the solution provider that best
serves the company’s operations. The performed survey revealed
that most of the capabilities of existing telematics systems are
for data communication, not fleet performance analysis (Trimble
and Bowman 2012). Aslan and Koo (2012) proposed an implemen-
tation plan for the use of telematics technology in improving the
productivity of roadway maintenance operations. A data collection
system layout was proposed to gather telematics data and report
operation productivity on a real-time basis with geospatial loca-
tions. Future work was suggested to perform field tests of the sys-
tem and to develop productivity improvement metrics to enhance
roadway maintenance operations.

Despite the contribution of previous research studies, no effort
was made in developing methodologies to transform telematics data
into useful information that can be used and integrated in the man-
agement operations of heavy equipment fleets. The development
of these methodologies requires the identification of relevant tele-
matics data and the development of efficient algorithms to generate
required equipment performance information.

Telematics System and Data

This section presents a brief technical description of the compo-
nents of a typical telematics system and the types of collected
equipment data. As shown in Fig. 1, a typical OEM or TSP tele-
matics system involves three basic components: (1) transponder
units on fleet assets to collect data; (2) communication medium to
transmit data; and (3) a user interface to allow fleet managers to
view real-time data and even communicate with the asset.
• First, a transponder unit is installed on each fleet asset that is

physically connected to the engine and equipment control sys-
tem to collect operation and location data on a real-time basis.

Fig. 1. Telematics system components and data flow
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The next subsection describes in more detail the transponder
unit, its hardware connection to the equipment, and col-
lected data.

• Second, the transponder unit transmits the collected data
through a standard wireless communication medium, which
includes code division multiple access (CDMA) and global
system for mobile communications (GSM) networks. The trans-
ponder unit literally calls the system server to transmit current
values of telematics data once a change occurs to the equipment
status, like turning on the ignition or incurring an engine health
problem. The servers store and archive the telematics data that
are collected for all fleet assets for an extended period of time,
and can be accessed by fleet managers for real-time or periodical
reporting and analysis.

• Third, the telematics system uses multiple user-interface alter-
natives to enable friendly and reliable access to the stored fleet
operational data. Fleet managers can access the data through an
online system that provides various data view options and basic
reporting functions. As shown in Fig. 1, one-way notifications
can be sent from the system server to wireless mobile devices of
the fleet management department to report serious occurrences
related to unauthorized equipment use or breakdown. A more
interactive and advanced user interface can be provided through
an online software package, in which the fleet manager can view
the data and generate basic generic reports related to equipment
runtime hours and use. As shown in Fig. 2, fleet managers can
use graphical tools within the system to draw geo fences and geo
zones to represent distinct geographic zones that can be used to
refer to company construction sites or service yards. After these
geo fences and zones are defined, the telematics system relates
the telematics data to the geo zones from where the data were
sent, using the unit’s GPS latitude and longitude. As described

in later sections, mapping the geographic presence of the com-
pany in terms of its construction sites and yards would greatly
help in the proposed methodology of fleet use analysis. Tele-
matics online tools can also provide some remote-control cap-
abilities by calling the fleet unit through the communication
medium to either request an update of specific data or even
remotely disabling the equipment.
The rugged, metal telematics transponder unit is approximately

the size of a large ashtray and houses the GPS receiver, wireless
radio, and internal circuitry. As shown in Fig. 3, the transponder
unit has four types of connecting cables to receive different tele-
matics data and transmit them to the wireless network and then
to the system server. First, the location data are obtained from a
GPS antenna that is placed on top of the equipment using magnets
or adhesive. Second, the main interface cables are used to connect
the transponder to multiple points in the equipment to (1) power the
transponder unit itself; (2) identify ignition events of the engine;
and (3) obtain odometer readings. Third, other health diagnostic
data can be obtained through analog or digital connections that con-
nect to the equipment’s controller area network communication
(CAN-Bus). CAN-Bus is an internal communication system in
heavy construction equipment that interconnects its electronic con-
trol units (ECUs), which control the equipment’s subsystems and
sensors, such as fuel, oil, fans, and engine. (Romans et al. 2000,
Wan et al. 2009). The most recent equipment models are designed
based on the J1939 standard, which is specified by the Society of
Automotive Engineers (SAE) to define protocols of transferring
equipment data between ECUs across the CAN-bus network. Older
tiers of equipment and/or their engines are not manufactured with
an internal monitoring system, which results in disabling the CAN-
bus connection. Accordingly, only basic data can be obtained
for older equipment tiers through the main interface cables, which

Fig. 2. Telematics user interface, locations map, and use of geo fences (image courtesy of DPL America)
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include ignition events and odometer readings. Other advanced
data can be obtained in newer equipment tiers through the CAN-
bus connection, such as fuel level, oil pressure, coolant tempera-
ture, engine average speed in rpm (round/minute), and error codes
for the engine, transmission, or brakes.

Integration of Telematics Data into Fleet
Management

Although telematics technology provides a real-time reporting of
the equipment fleet data, there was no clear methodology for inte-
grating such data in the major functions and decisions of fleet man-
agement (Monnot and Williams 2011). As shown in Fig. 4, each
piece of equipment in the fleet is tracked by receiving a massive
amount of time-stamped data entries that report the values of

the equipment’s monitored variables. Each data entry consists
of the following: (1) time stamp of the event, when the data
was received from the equipment’s telematics transponder; (2) basic
operation data that include the equipment’s location within the de-
fined geo zones (jobsites or yards), engine run time, GPS-based
speed value, temperature, and battery voltage; (3) CAN-bus data
that are available only for newer equipment tiers and include total
fuel used, engine speed (rpm), machine lamps status (engine and
transmission), engine oil pressure, temperatures (oil and coolant),
fuel rate (gallons per hour, GPH), and calculated engine run and
idle times based on the reported rpm.

Fleet managers can export these data from the telematics system
in the form of different reports and spreadsheets, but are faced with
different challenges when using them in the routine and strategic
management decisions. First, fleet managers lack efficient compu-
tational algorithms to transform large amounts of raw telematics
data into more useful higher-level information on their fleet con-
dition. Second, telematics technology providers do not provide a
clear methodology of how to integrate the collected data and infor-
mation into typical fleet managerial tasks, such as health condition
assessment, maintenance, replacement, operations control, and cost
control. Third, it is not possible to justify the return on investment
of procuring telematics technology to higher company management
because of the lack of established-use methodologies of telematics
data in a company’s operations.

The following sections provide a detailed description of two
possible uses of telematics data in fleet management: identification
of overall fleet use and assessment of equipment health condition.
The proposed methodologies of equipment use and health assess-
ment are applied to the telematics data of a large equipment rental
company and a trucking company. Similar application of the
proposed methodology can also be performed to construction
companies, as implied assumptions are valid in both cases. These
developed methodologies are envisioned to be part of a larger
framework that provides comprehensive integration of telematics
data into a company’s fleet and asset management program.

Fleet Use Assessment

A new algorithm was developed to calculate and assess the com-
pany’s fleet use based on equipment locations that are reported
by the telematics system. Fleet use is defined in this study as the
percentage of time the equipment spent out of the company yards
relative to the total reporting time. This definition of fleet use is
based on the assumption that having the equipment out of its base
yard implies that it is either being used by a construction company
or is rented/leased by the rental company. Accurate assessment of
fleet use is a very critical prerequisite for other managerial tasks
and decisions related to strategic business planning and fleet

Fig. 3. Telematics transponder unit installation and connections
(images courtesy of DPL America)

Fig. 4. Telematics time-stamped data entries
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replacement. Telematics technology is proposed as an accurate,
reliable, and efficient methodology of collecting necessary data
for the assessment of fleet use. To quantify fleet use, two values
are retrieved from each telematics data entry of every piece of
equipment: (1) the location of the equipment in terms of the geo
zone where it exists; and (2) the time of the reported location. These
two values are analyzed using the newly developed telematics-
based fleet-use assessment algorithm, which involves the following
steps (Fig. 5):
1. Export fleet data from the telematics system in the form of a

standard location history spreadsheet report for each piece of
equipment. This report helps to focus only on the needed data
and ignore other telematics data that are not relevant to the
current task of fleet use assessment.

2. Identify the number of equipment pieces in the fleet (NE) and
the number of telematics data entries in the location history
report of each equipment (NDi). Set the counter values of
equipment (i) and data entries (j) to 1, where the entries
are ordered from recent to oldest. Therefore the time stamps
(Ti;j) of the first entries will be larger than those later in the
list (i.e., Ti;j > Ti;jþ1).

3. Check whether the equipment i is reported by data entry j as
in-yard (Zonei;j = “Yard”). This is done by examining the va-
lue of the geo-zone parameter and looking for the word “yard”
as an indication that its GPS location is within the defined
geo fences of one of the company yards. If the equipment

is in-yard, set the tracking variable INi;j, equal to “True”;
otherwise set it equal to “False.” For the first equipment in
the fleet, go to step 8. For the next equipment, go to step 4
if the equipment is in yard;otherwise go to step 5.

4. In case equipment iwas in-yard for data entry j, check whether
it was also in-yard for previous data entry j − 1. If this con-
dition is true (INi;j ¼ INi;j−1 = “True”), update the time in-
yard variable of the equipment (TIi) by calculating the total
time difference between data entries j and jþ 1 (Ti;j and
Ti;jþ1, respectively), as shown in Eq. (1). If this condition
is false (INi;j ≠ INi;j−1), go to step 6

TIi ¼ TIi þ ðTi;j − Ti;jþ1Þ ð1Þ

5. In case equipment i was out of yard for data entry j, check
whether it was also out of yard for previous data entry
j − 1. If this condition is true (INi;j ¼ INi;j−1 = “False”), up-
date the time out-of-yard variable of the equipment (TOi) by
calculating the total time difference between data entries j and
jþ 1 (Ti;j and Ti;jþ1, respectively), as shown in Eq. (2). If this
condition is false (INi;j ≠ INi;j−1), go to step 6

TOi ¼ TOi þ ðTi;j − Ti;jþ1Þ ð2Þ

6. In case equipment i had different location values (inside and
outside yard) in data entries j and jþ 1, update both time vari-
ables TIi and TOi using Eqs. (3) and (4), which assume that
the time difference is equally divided between the in-yard and
out-of-yard statuses

TIi ¼ TIi þ ðTi;j − Ti;jþ1Þ=2 ð3Þ

TOi ¼ TOi þ ðTi;j − Ti;jþ1Þ=2 ð4Þ

7. Repeat steps 3 through 6 for the next data entry (j ¼ jþ 1)
until the last data entry ND is analyzed.

8. Repeat steps 3 through 7 for the next equipment in the fleet
(i ¼ iþ 1) until the complete location history report of the last
equipment NE is analyzed. Calculate the use rate Ui for each
equipment using Eq. (5) as the ratio between the out-of-yard
time (TOi) and the total analyzed time (TOi þ TIi)

Ui ¼ TOi=ðTOi þ TIiÞ ð5Þ

Visual plotting of the fleet equipment use rates can be useful in
providing valuable insight to the managers for effective fleet
replacement, expansion, and disposal decisions. As shown in Fig. 6,
the use rate of all fleet pieces of the rental company’s equipment is
plotted with an average use of approximately 38.7% during the an-
alyzed time of 6 months. A targeted overall use rate was set by the
fleet manager to be 35%, which indicates that the fleet is over-used.
Such a low targeted use rate is imposed by the manager to account
for possible peak periods of equipment rental and use demand.
More insight can be obtained by plotting the use rates of each
equipment type, such as backhoes and excavators, as shown in
Fig. 7. The backhoes were found to be the most used equipment
type, with an average use rate of 49%, whereas the excavators’
average use was approximately the same as the whole fleet
(37.5%). Per the use information obtained from the telematics data,
fleet managers would consider buying more pieces of over-used
equipment types, and disposing some pieces of under-used equip-
ment types. Despite the simplicity of the proposed use rate algo-
rithm, its novelty comes from its ability to transform large dispersed
data volume into a fleet-wide use rate. To the best of the authors’Fig. 5. Telematics-based fleet-use assessment algorithm
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knowledge, no such metric has been proposed before for equipment
fleet based on telematics data.

Equipment Health Monitoring

Equipment health monitoring (EHM) is the process of collecting
vital equipment performance parameters to continuously assess
the condition of the equipment and detect signs of possible failure.
EHM provides a proactive approach to equipment asset mainte-
nance by fixing the equipment just before a severe failure event
happens, instead of the current reactive approach after a failure
occurs. EHM is an essential facilitator of predictive maintenance
program (Gransberg et al. 2006, p. 237), in which maintenance

tasks are scheduled just before failures are expected to happen
based on the monitored performance of the machine. Previous
research on equipment and machine health monitory focused on
monitoring the condition (primarily the vibrations) of stationary
mechanical machines or electrical micro-machines (Dutta and
Giurgiutiu 2000; Yan and Gao 2007; Da et al. 2011). Equipment
manufacturers have encouraged research and development efforts
to develop health-monitoring systems that integrate remote sensing
and equipment oil sampling to diagnose the equipment’s condition
and estimate its life expectancy (Murakami et al. 2002).
However, no recent research studies are known to have investigated
the use of telematics data in equipment health monitoring and
diagnostics.

A telematics-based equipment health-monitoring (T-EHM)
framework was developed and is proposed in this paper to support
fleet service managers in using telematics data in their predictive
maintenance programs. The developed T-EHM framework consists
of two modules: (1) the health parameters processing and visuali-
zation (HPPV) module; and (2) the equipment failure hazard esti-
mation (EFHE) module. The following subsections describe each
of the framework modules.

Health Parameters Processing and Visualization
Module

The objective of this module is to identify, retrieve, process, and
visualize telematics data that represent vital equipment health
parameters. The HPPV module currently uses 10 CAN-bus values
for each telematics data entry, which are identified by the research
team, the company service manager, and the limited research avail-
able on heavy equipment health monitoring (Murakami et al. 2002;
Dekate 2013). Other possibly related parameters, such as intake
manifold temperature, were not selected because of observed in-
consistencies or incompleteness in their data. Such inconsistencies
in some telematics data occur as a result of some equipment man-
ufacturers not precisely following the J1939 standard, which is
adopted by most telematics technology providers. However, the
proposed module and underlying methodologies can be expanded
flexibly to include additional parameters in case their complete tele-
matics data are not available. Accordingly, the selected parameters
include:
1. Maximum coolant temperature (MCTi) in degrees Fahrenheit,

which is observed on the day when the telematics data entry is
received;

2. Maximum engine oil pressure (MOPi) in pounds per square
inch (PSI);

3. Maximum engine oil temperature (MOTi) in degrees
Fahrenheit;

4. Maximum engine speed (MESi), in rounds per minute
(rpm);

5. Maximum engine percent torque (MPTi), which indicates the
load on the engine as a percentage value;

6. Engine lights, which include red stop light (RSL), amber
warning light (AWL), engine protection light (EPL), and mal-
function indicator light (MIL). RSL is used to relay trouble
code information that is of a severe enough condition that
it warrants stopping the vehicle. AWL is used to relay trouble
code information that is reporting a problem with the vehicle
system but the vehicle does not need to be stopped immedi-
ately. In contrast, EPL and MIL are used to report less severe
hazard conditions related to the vehicle system and emissions-
related issues. These engine light variables are modeled as
binary values (1 or 0);

7. Maximum fuel rate (MFRi) in gallons/hour;
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8. Engine working hours (HWi), which reports the cumulative
number of hours the engine ran with a speed (rpm) above a
specified threshold, set by the fleet service manager;

9. Engine Idling hours (HIi), which reports the cumulative num-
ber of hours the engine ran with a speed (rpm) less than the
specified threshold; and

10. Engine total run hours (HTi).
The health parameter values of a piece of equipment can be

visualized and compared with other equipment of the same type
to enable fleet service managers to qualitatively assess its perfor-
mance and health. Fig. 8 shows an example visualization of the
total counts of RSL, AWL, EPL, andMIL engine lamps (i.e., TRSL,
TAWL, TEPL, and TMIL) for all dozers in the fleet during a
6-month period, which primarily highlights three unhealthy
machines because of the high number of reported engine lamps.
Accordingly, fleet and service managers can either increase the
maintenance commitment to these machines or select them for po-
tential replacement or sale. However, visualizing already obtained
telematics data represents a reactive approach to equipment health
monitoring (Gransberg et al. 2006, p. 237). The second proposed
module, in the next subsection, attempts to provide a proactive
approach to predicting equipment health issues based on ongoing
collected telematics data.

Equipment Failure Hazard Estimation Module

The EFHE module is designed to integrate telematics data into pre-
dictive maintenance programs by deriving a failure hazard function

for every equipment type. Hazard functions are a class of survival
models that statistically analyze a company’s data timeline to relate
failure events’ dependency on one or more covariates over time
(Ma and Krings 2008; Gu et al. 2011). Cox’s proportional hazards
model (Cox 1972), one of the fundamental survival models, is used
in this research to relate equipment failure hazard to the previously
identified telematics health parameters. Cox’s model is one of the
most used survival function techniques as it captures the survival/
failure determinates more than nonparametric models and is less
restrictive than the parameter models (Baily et al. 2006).

It is hypothesized that the failure hazard probability of a piece
of equipment follows a time-varying dynamic hazard Cox function
hðtÞ (Martinussen and Scheike 2006), as shown in Eq. (6). The
hazard function is controlled by its baseline failure rate h0ðtÞ,
covariates vector XðtÞ (i.e., values of telematics health parameters),
and their coefficients vector βðtÞ. This function assumes that cova-
riates are multiplicatively related to the hazard, which indicates that
a change in any element of the covariates vector results in propor-
tional scaling of the hazard. For example, an increase in the engine
oil temperature is expected to result in an increase in the equip-
ment’s failure hazard. The function is made dynamic by allowing
its baseline failure rate and the coefficients of its covariates to
change over time

hðtÞ ¼ h0ðtÞ × exp½βðtÞ · XðtÞ� ð6Þ

The EFHE module follows a newly developed methodology to
construct and assess the fitting of the hazard function to a selected
set of health parameters to estimate the failure hazard of an equip-
ment type. The methodology is generic and can be applied to any
equipment type and health parameters that are initially suggested
by the fleet manager. The outcome of the methodology is the time-
varying survival function to the provided telematics data, and the
statistical fitting metrics of the parameters and their coefficients.
The methodology is iterative as the fleet manager can consider dif-
ferent groups of health parameters to obtain the most fitted survival
function. The methodology involves the following nine steps:
1. The telematics data time series of each equipment is broken

down into successive survival lives that are divided by the
equipment’s failure events, as shown in Fig. 9. The engine’s
RSL and AWL lights were used to refer to sever failure events
of the equipment, which eliminates the fleet manager’s need to
track actual maintenance records and integrate with the already
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Fig. 8. Visualization of equipment health parameter (engine lamps) for
dozers

Fig. 9. Telematics-based sampling of equipment failure and survival lives
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available telematics data. The last open-ended time interval
of equipment, which represents a recovery from a failure with
no observed failure event during the analysis period, is a
powerful technique in survival analysis, called data right-
censoring (Ma and Krings 2008); it considers only relevant
and complete failure and recovery cycles;

2. The time-varying periods of the survival function are defined
by the fleet manager or service technician to represent the
dynamically changing equipment’s failure hazard over time.
The number and durations of these time-varying periods need
to be carefully set as they affect the performance of the pro-
posed methodology. Shorter periods would provide more dy-
namic and accurate survival function, but would result in fewer
telematics data observations to statistically generate function
coefficients with sufficient fitting;

3. The failure hazard hðtÞ for each telematics entry at time t
experienced by the equipment over a survival life period is
quantified and sampled as the ratio between (1) the net engine
total hours consumed since the survival life start time to the
corresponding time t; and (2) the survival life length L as the
difference between net engine total hours experienced during
the survival period, as shown in Fig. 9. Accordingly, the total
hours parameter cannot be considered as a survival function
covariate as it is used in calculating the function dependent
variable (i.e., failure hazard);

4. The outliers in the telematics data entries are identified and
eliminated if the absolute studentized residual of any of its
fields is bigger than 3.0 (Montgomery et al. 2001). Outliers
represent low or high inconsistent extremes that are observed
in the collected data that would prohibit the development of
effective regression models of the survival function;

5. The telematics entries are distributed between the time-varying
periods of the survival function, based on their time (t) values;

6. The telematics entries of each time-varying period are ran-
domly divided into two equal groups (Lucko and Rojas
2010): (1) an estimation group that is used to estimate the
hazard function regression coefficients (see step 7); and
(2) a prediction group that is used to validate the hazard func-
tion and its estimated coefficient (see step 8);

7. For each time period, the survival function baseline failure rate
h0ðtÞ and coefficients vector βðtÞ are estimated by applying
the data linearization regression technique to the estimation
group of telematics entries. The regression population includes
all of the telematics data estimation group within the corre-
sponding time-varying survival function period. The fitness
of the generated survival function and its coefficients can
be evaluated using (1) the p-value for the constant and each
covariate coefficient as generated from by regression analysis,
which is used to test the hypothesis of survival function
dependency on each of the covariates; (2) coefficients of
determination (R-square, Multiple R-square, and adjusted
R-square) to test the fit of the resulting survival function to
the observed data; and (3) analysis of variance (ANOVA)
significance level F, which quantifies the probability that the
proposed function does not explain the variation in the equip-
ment hazard (Field 2005);

8. For each time period, the survival function coefficients are
validated by using the survival function to calculate the failure
hazard estimate values for every telematics entry in the predic-
tion group and comparing the estimates with the observed
values. The validity is assessed using the Pearson coefficient
of correlation (Rcorr) and the student t-test to examine the
hypothesis that no relation exists between the observed and
estimated hazard values (Lucko et al. 2006). In addition,
the variance between estimated and observed failure hazard
values is quantified using the root mean square error (RMSE),
where its smaller values reflect higher prediction accuracy
(Montgomery et al. 2001); and

9. Repeat steps 7 and 8 to experiment with different combina-
tions of the proposed covariates to find the survival function
coefficients that provide (1) the maximal fit to the estimation
telematics data group (p-value, R-square, F); and (2) the mini-
mal variance with the prediction data group (i.e., RMSE) with
validated correlation (Rcorr and t-test).

The health-monitoring methodology of the proposed EFHE
module was tested by applying it to the telematics data time series
of two fleets (dozers and backhoes) in the rental company, in
addition to the data of dump trucks in another hauling company.

Table 1. Final Regression Results for the Dozers’ Hazard Function

Class Variables/parameters

Survival intervals (days)

0 < t < 50 50 < t < 100 100 < t < 150 150 < t < 300 300 < t

Value (P-value) Value (P-value) Value (P-value) Value (P-value) Value (P-value)

Parameters Constant (C) 1 (N/A) 1 (N/A) 1 (N/A) 1 (N/A) 1 (N/A)
X1 (MCT) 0 (N/A) −0.00848 (0.00002) 0 (N/A) 0 (N/A) 0 (N/A)
X2 (MOP) −0.04917 (0.0) −0.0206 (0.0) −0.01491 (0.0) −0.00728 (0.0) 0 (N/A)
X3 (MOT) 0.01101 (0.0003) 0.0096 (0.00016) 0 (N/A) 0 (N/A) 0 (N/A)
X4 (MES) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) −0.0001 (0.0)
X5 (MPT) 0.02792 (0.0007) 0.0135 (0.0061) 0.01336 (0.00035) 0.00659 (0.00093) 0 (N/A)
X6 (MFR) −0.35908 (0.0) −0.1408 (0.00001) −0.13776 (0.0) −0.09602 0 (N/A)
X7 (HW) 0.00364 (0.0) 0.00195 (0.0) 0.00193 (0.0) 0.00129 0.00016 (0.09811)
X8 (HI) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0.00101 (0.07346)

Estimation Observations 338 185 133 198 24
Multiple R 0.800193 0.854431 0.857417 0.845453 0.906493448
R square 0.640309 0.730053 0.735165 0.714791 0.821730372

Adjusted R square 0.633072 0.716926 0.721035 0.705226 0.757133264
Significance F 1.054E-72 3.71E-48 1.46E-35 1.3E-51 7.37E-08

Prediction Observations 338 185 133 198 27
RMSE 0.2967 0.2696 0.223 0.1691 0.0499
Rcorr 0.3896 0.3745 0.4375 0.4965 0.7845

Observed t-test 7.707 5.5236 5.6319 8.0085 6.3251
Critical t-test 1.64912 1.65304 1.6563 1.65221 1.70562
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The analyzed fleets included 21 dozers, 29 backhoes, and 17
trucks. The collected data from each fleet represented the observa-
tion values of the previously mentioned 10 parameters, in which
(1) engine lights were used to model failure events and survival
period boundaries; (2) the engine’s total run hour was used to cal-
culate the failure hazard; and (3) the remaining eight parameters
were proposed as the covariates of the survival function, which in-
clude coolant temperature (MCT), oil pressure (MOP), oil temper-
ature (MOT), engine speed (MES), percent torque (MPT), fuel rate
(MFR), working hours (HW), and idling hours (HI). The initial tel-
ematics data collected included 1,836 sample data observations for
the dozers, 3,315 observations for the backhoes, and 3,880 obser-
vations for the trucks. After removing the data outliers, the data
populations were reduced to 1,767, 3,016, and 3,485 for the dozers,

backhoes, and trucks, respectively. To obtain the time-varying sur-
vival function, the data of each fleet were divided into five possible
survival intervals: less than 50 days, between 50 and 100 days, be-
tween 100 and 150 days, between 150 and 300 days, and more than
300 days. The final step in data preparation is to split the data in
every period between the two groups of survival function coeffi-
cients estimation and survival function prediction validation.

Regression analyses were performed for all five survival inter-
vals of the three fleets to fit their observed pairs of telematics health
parameters and the survival metric with the proposed Cox’s sur-
vival function. Tables 1–3 give the final regression results for
the survival functions of the dozers, backhoes, and trucks, respec-
tively. For each fleet, the regression results include the used metrics
of coefficients estimation quality (multiple R, R-square, adjusted

Table 2. Final Regression Results for the Backhoes’ Hazard Function

Class Variables/parameters

Survival intervals (days)

0 < t < 50 50 < t < 100 100 < t < 150 150 < t < 300 300 < t

Value (P-value) Value (P-value) Value (P-value) Value (P-value) Value (P-value)

Parameters Constant (C) 1 (N/A) 1 (N/A) 1 (N/A) 1 (N/A) 1 (N/A)
X1 (MCT) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)
X2 (MOP) −0.03958 (0.0) −0.0165 (0.0) −0.01449 (0.00001) −0.01442 (0.0) −0.01318 (0.)
X3 (MOT) 0.007714 (0.0) 0 (N/A) 0 (N/A) 0 (N/A) −0.00093 (0.023)
X4 (MES) 0 (N/A) 0 (N/A) 0.000467 (0.001295) 0 (N/A) 0 (N/A)
X5 (MPT) 0 (N/A) 0.01835 (0.00196) −0.00913 (0.03857) 0.005372 (0.0595) 0 (N/A)
X6 (MFR) 0 (N/A) −0.18099 (0.00614) 0 (N/A) 0 (N/A) 0 (N/A)
X7 (HW) 0.001505 (0.0) 0 (N/A) 0.00156 (0.0) 0 (N/A) 0.007903 (0.0)
X8 (HI) 0 (N/A) 0.000929 (0.0) −0.0013 (0.01273) 0.001227 (0.0) −0.00515 (0.0)

Estimation Observations 664 305 236 241 62
Multiple R 0.768780949 0.811130642 0.767930736 0.789077673 0.951865503
R square 0.591024147 0.657932919 0.589717615 0.622643574 0.906047937

Adjusted R square 0.588273842 0.651201353 0.578284153 0.615270831 0.883946968
Significance F 8.52E-128 9.4E-69 1.03E-42 5E-50 9.16E-29

Prediction Observations 665 305 236 241 61
RMSE 0.374626 0.23463 0.22687 0.26875 0.1
Rcorr 0.119655 0.3971456 0.32333 0.49067 0.878159

Observed t-test 3.103263 7.5326 5.22682 8.7055 10.7
Critical t-test 1.647 1.65 1.651 1.651 1.671

Table 3. Final Regression Results for the Dump Trucks’ Hazard Function

Class Variables/parameters

Survival intervals (days)

0 < t < 50 50 < t < 100 100 < t < 150 150 < t < 300

300 < tValue P-value Value P-value Value P-value Value P-value

Parameters Constant (C) 1 (N/A) 1 (N/A) 1 (N/A) 1 (N/A) No failure recorded
for this periodX1 (MCT) 0 (N/A) −0.00326 (0.0108) −0.00292 (0.0) 0 (N/A)

X2 (MOP) −0.05807 (0.0) 0 (N/A) 0 (N/A) 0 (N/A)
X3 (MOT) 0.00394 (0.0139) 0.00287 (0.00353) 0 (N/A) 0 (N/A)
X4 (MES) 0 (N/A) −0.00024 (0.00669) 0 (N/A) –0.00004 (0.0)
X5 (MPT) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)
X6 (MFR) 0.0724 (0.00006) 0 (N/A) 0.023205 (0.000078) 0 (N/A)
X7 (HW) 0.000463 (0.0) 0.000394 (0.0) 0.000066 (0.065468) 0 (N/A)
X8 (HI) 0 (N/A) −0.0004 (0.0012) 0 (N/A) 0 (N/A)

Estimation Observations 1,064 411 232 37
Multiple R 0.8083898 0.8909896 0.8238763 0.824544
R square 0.653494 0.79386 0.6787724 0.679874

Adjusted R square 0.65157 0.78937 0.6716 0.652096
Significance F 4.74E-242 1.366E-136 4.25498E-56 2.51E-10

Prediction Observations 1,063 410 232 36
RMSE 0.3468 0.174413 0.1307 0.066
Rcorr 0.22514 0.376173 0.2435 0.286

Observed t-test 7.5267 8.2 3.807519 1.74
Critical t-test 1.64629 1.6486 1.6515 1.69
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R-square, and significance F) and survival function prediction ac-
curacy (RMSE, Rcorr, observed t-test, and critical t-test). The strong
correlations between the considered telematics parameters and the
equipment failure hazard were clearly highlighted by (1) the low
values of significance F, which refer to the probability that the sur-
vival function does not explain the equipment failure hazard; and
(2) the values of the observed t-Test values that are greater than the
critical t-Test values, which lead to the rejection of the hypothesis

of no correlation existing between observed and predicted failure
hazard values. Accordingly, the equipment failure hazard failure
function of each fleet type can be constructed using the gen-
erated Cox’s function covariate coefficients, such as the survival
function of the dozers shown by Eq. (7). The survival function
of the trucks fleet includes only four intervals because of the ab-
sence of recorded failures beyond 300 days of the observed trucks,
as shown in Table 3.

hðtÞ ¼

8>>>>>>>><
>>>>>>>>:

EXP½−0.04917 · MOPþ 0.01101 · MOTþ 0.02792 · MPT − 0.35908 · MFRþ 0.00364 · HW� 0 ≤ t < 50

EXP½−0.00848 · MCT − 0.0206 · MOPþ 0.0096 · MOTþ 0.0135 · MPT − 0.1408 · MFRþ 0.00195 · HW� 50 ≤ t < 100

EXP½−0.01491 · MOPþ 0.01336 · MPT − 0.13776 · MFRþ 0.00193 · HW� 100 ≤ t < 150

EXP½−0.00728 · MOPþ 0.00659 · MPT − 0.09602 · MFRþ 0.00129 · HW� 150 ≤ t < 300

EXP½−0.0001 · MESþ 0.00016 · WHþ 0.00101 · HI� 300 ≤ t

ð7Þ

The generated hazard functions of the three observed fleets
provide useful insight into telematics-based prediction accuracy
of equipment failure hazard and its dynamic dependency on tele-
matics health parameters. As presented in Tables 1–3, better sur-
vival function fitting and prediction accuracy to the data were
achieved for the last survival life interval compared with earlier in-
tervals. For example, a higher R-square value and a lower RMSE
value were achieved for the last interval (t > 300) of the dozers
compared with their previous intervals, even with fewer data ob-
servations. This can be attributed to the consistency of these later
observations for reporting a higher number of failure occurrences at
such long survival periods, as a result of the equipment’s accumu-
lated tear and decay. In general, the data show that failure hazard
can be statistically predicted with higher accuracy and fewer infor-
mation requirements (number of covariates) with an increase in
the equipment’s survival time. This can be shown by a failure
prediction error of 29.67% in the first survival interval of the doz-
ers, which decreases to 4.99% error in the last modeled survival
interval.

Summary and Conclusions

This paper presents novel methodologies to support heavy equip-
ment fleet managers in using and integrating basic and CAN-bus
telematics data into two major managerial tasks: fleet use assess-
ment and equipment health monitoring. First, the telematics system
is described in terms of the hardware, computational infrastructure,
and collected data. Second, a telematics-based fleet-use assessment
algorithm was developed to use received equipment spatiotemporal
data to calculate its use rate based on its times outside and inside the
idling yards. Third, a telematics-based equipment health-monitoring
(T-EHM) framework was developed as a proactive maintenance
tool to estimate the equipment failure probability. The framework
applies survival analysis techniques to the collected telematics
health parameters to generate a dynamic hazard function for each
equipment type. The developed methodologies were validated
through their application to large equipment fleets from two differ-
ent companies (rental house and hauling company). Although the
presented results are specific to the analyzed test beds and their

telematics data, the proposed research methodologies (fleet use
and health monitoring) are generic and can be generalized to other
fleet-based business types. The merit of the developed methodol-
ogies was acknowledged by the telematics manager of the analyzed
equipment rental company in terms of providing critical insights
about the fleet use and equipment health and failure assessment.
The telematics manager suggested integrating the developed meth-
odologies into existing telematics systems to provide value-adding
service and information to equipment fleet owners.

Future research efforts are planned to expand the developed
methodologies, improve their accuracy, and provide intelligent
decision-support capabilities. First, optimization models can be de-
veloped to maximize the fleet’s overall use by moving equipment
assets from low-use locations to higher-use locations. This would
require the collection and integration of fleet operational data
related to the expected generated revenue and the transportation
cost of relocating fleet equipment assets. Second, the equipment’s
health-monitoring framework can be improved by using the health
standards of equipment original manufacturers to identify the ideal
operational ranges of equipment health parameters. Third, further
research is needed to improve the accuracy of the predicted failure
hazard in earlier survival time intervals by integrating additional
data from other fleet data sources, such as the engine oil tests from
commercial maintenance management software (Murakami et al.
2002). Fourth, automated modules can be developed based on the
proposed use and health-assessment methodologies and integrated
into available telematics data to provide value to heavy-equipment
fleet owners, as suggested by the telematics manager of the case
study equipment rental company.
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